Connexin45 regulates endothelial-induced mesenchymal cell differentiation toward a mural cell phenotype.
نویسندگان
چکیده
OBJECTIVE The focus of this study was to investigate the role of connexin (Cx) 45 in endothelial-induced mural cell differentiation. METHODS AND RESULTS We created mural cell precursors that stably express only Cx45 in Cx43-deficient mesenchymal cells (ReCx45), and used our in vitro model of blood vessel assembly to assess the capacity of this Cx to support endothelial-induced mural cell differentiation. Lucifer Yellow dye injection and dual whole-cell patch clamping revealed that functional gap junctions exhibiting properties of Cx45-containing channels formed among ReCx45 transfectants, and between ReCx45 and endothelial cells. Heterocellular Cx45-containing gap junction channels enabled transforming growth factor-β activation and promoted the upregulation of mural cell-specific proteins in the mesenchymal precursors. CONCLUSIONS These studies reveal a critical role for Cx45 in the regulation of endothelial-induced mural cell differentiation, which is consistent with the phenotype of Cx45-deficient embryos that exhibit dysregulated transforming growth factor-β and lack mural cell development.
منابع مشابه
Gap junction communication mediates transforming growth factor-beta activation and endothelial-induced mural cell differentiation.
During blood vessel assembly, endothelial cells recruit mesenchymal progenitors and induce their differentiation into mural cells via contact-dependent transforming growth factor-beta (TGF-beta) activation. We investigated whether gap junction channels are formed between endothelial cells and recruited mesenchymal progenitors and whether intercellular communication is necessary for endothelial-...
متن کاملInvestigation of FLK-1 Gene Expression in Differentiated Mesenchymal Stem Cells, Exposed to Chemical, Mechanical and Chemical-mechanical Factors, in order to Study the Differentiation and its Stability
Background: Mesenchymal stem cells (MSCs) are multipotent cells, capable of differentiating into different cell lines.They can sense their surrounding biochemical and biophysical factors, which play major roles in their differentiation toward different phenotypes. Therefore, the exposure of these cells to endothelial growth factor (VEGF) as well as hemodynamic biomechanical forces, which act on...
متن کاملMesenchymal Stem Cells Differentiate to Endothelial Cells Using Recombinant Vascular Endothelial Growth Factor –A
Background: Vascular endothelial growth factor-A (VEGF-A), an endothelial cell-specific mitogen produced by various cell types, plays important roles in cell differentiation and proliferation. In this study we investigated the effect of recombinant VEGF-A on differentiation of mesenchymal stem cells (MSCs) to endothelial cells (ECs). Methods: VEGF-A was expressed in E. coli BL21 (DE3) and BL21...
متن کامل3D study of capillary network derived from human cord blood mesenchymal stem cells and differentiated into endothelial cell with VEGFR2 protein expression
New blood forming vessels are produced by differentiation of mesodermal precursor cells to angioblasts that become endothelial cells (ECs) which in turn give rise to primitive capillary network. Human cord blood (HCB) contains large subsets of mononuclear cells (MNCs) that can be differentiated into endothelial-like cells in vitro. Human mononuclear progenitor cells were purified from fresh umb...
متن کاملDifferentiation of Umbilical Cord Lining Membrane-Derived Mesenchymal Stem Cells into Endothelial-Like Cells
Background: Stem cell therapy for the treatment of vascular-related diseases through functional revascularization is one of the most important research areas in tissue engineering. The aim of this study was to investigate the in vitro differentiation of umbilical CL-MSC into endothelial lineage cells. Methods: In this study, isolated cells were characterized for expression of MSC-specific marke...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Arteriosclerosis, thrombosis, and vascular biology
دوره 33 2 شماره
صفحات -
تاریخ انتشار 2013